1,104 research outputs found

    Identification of geometrical models of interface evolution for dendritic crystal growth

    Get PDF
    This paper introduces a method for identifying geometrical models of interface evolution, directly from experimental imaging data. These local growth models relate normal growth velocity to curvature and its derivatives estimated along the growing interface. Such models can reproduce many qualitative features of dendritic crystal growth as well as predict quantitatively its early stages of evolution. Numerical simulations and experimental crystal growth data are used to demonstrate the applicability of this approach

    Identification of excitable media using a scalar coupled map lattice model

    Get PDF
    The identification problem for excitable media is investigated in this paper. A new scalar coupled map lattice (SCML) model is introduced and the orthogonal least squares algorithm is employed to determinate the structure of the SCML model and to estimate the associated parameters. A simulated pattern and a pattern observed directly from a real Belousov-Zhabotinsky reaction are identified. The identified SCML models are shown to possess almost the same local dynamics as the original systems and are able to provide good long term predictions

    Identification of a temperature dependent FitzHugh-Nagumo model for the Belousov-Zhabotinskii reaction

    Get PDF
    This paper describes the identification of a temperature dependent FitzHugh-Nagumo model directly from experimental observations with controlled inputs. By studying the steady states and the trajectory of the phase of the variables, the stability of the model is analysed and a rule to generate oscillation waves is proposed. The dependence of the oscillation frequency and propagation speed on the model parameters is then investigated to seek the appropriate control variables, which then become functions of temperature in the identified model. The results show that the proposed approach can provide a good representation of the dynamics of the oscillatory behaviour of a BZ reaction

    Identification of radius-vector functions of interface evolution for star-shaped crystal growth

    Get PDF
    This paper introduces a new method based on a radius-vector function for identifying the spatio-temporal transition rule of star-shaped crystal growth directly from experimental crystal growth imaging data. From the morphology point of view, the growth is decomposed as initial conditions, uniform growth and directional growth, which is represented by a static polynomial model based on the Fourier expansion. A recursive model is also introduced to help understand the dynamic characteristics of the observed systems. The applicability of the proposed approach is demonstrated using data from a simulation and from a real crystal growth experiment

    Enhanced Strength and Ductility of AZ80 Magnesium Alloys by Spray Forming and ECAP Techniques

    Get PDF
    Fast spray forming technology followed by equal channel angular pressing (ECAP) was employed to obtain a specific microstructure: separated coarse magnesium grains surrounded by deformation networks. The deformation layer consisted of ultrafine grained magnesium with an average grain size of 0.6 μm and ellipsoidal shaped β-Mg17Al12 particles with a size of 200-300 nm and a volume fraction of 13%. Mechanical tensile test demonstrates the advantage of the specific structure: a yield strength of 235MPa combined with an elongation to failure of 14%

    A Spectrum Efficient Self-Admission Framework for Coexisting IEEE 802.15.4 Networks under Heterogeneous Traffics

    Get PDF
    Due to the limited bandwidth resource and the interference among networks, it is challengeable to coordinate the bandwidth resource of multiple IEEE 802.15.4-based wireless personal area networks (WPANs) with heterogeneous traffics, especially in a distributed mode. In this paper, to handle this problem, we first propose a renewal carrier sense multiple access (CSMA)-based self-admission access mechanism for coexisting WPANs in order to maximize the frequency resource utilization and satisfy the diverse rate requirements of heterogeneous traffics. Secondly, we propose the time-space-hard core point process (TS-HCPP) to abstract the renewal CSMA-based self-admission access process for the IEEE 802.15.4 network with multi-channels. TS-HCPP considers the correlation of time and space, and appropriately judges the strong interference between coexisting WPANs, which can solve the density underestimation problems of traditional HCPP. Finally, relying on the TS-HCPP, we obtain the optimum combination of access parameters, which meets the minimum service rate requirements for heterogeneous traffics and maximizes the frequency resource utilization. The simulation results show that the density of coexisting WPANs evaluated by the TS-HCPP matches the experimental results, and an improvement in spectral efficiency of coexisting WPANs can be achieved in our proposed self-admission framework

    Medium and source convergence in crisis information acquisition: Patterns, antecedents, and outcomes

    Get PDF
    To understand how individuals navigate the complex, dynamic, and bewildering media information environment, we propose a convergence framework theorizing individuals' acquisition of information from distinct sources on multiple mediums, along with its antecedents and consequences. This study is among the first to test the convergence framework. Using a national sample during the COVID-19 pandemic, our results revealed four convergence patterns and key antecedents and outcomes of these patterns. Individuals' information verification tendency, perceived medium anonymity, and trust in alternative sources were associated with distinct patterns of convergence, which led to different risk perceptions. Future research should explore different forms of convergence and additional antecedents and outcomes of convergence

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented

    Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow

    Get PDF
    We present independent observations of the solar-cycle variation of flows near the solar surface and at a depth of about 60 Mm, in the latitude range ±45\pm45^\circ. We show that the time-varying components of the meridional flow at these two depths have opposite sign, while the time-varying components of the zonal flow are in phase. This is in agreement with previous results. We then investigate whether the observations are consistent with a theoretical model of solar-cycle dependent meridional circulation based on a flux-transport dynamo combined with a geostrophic flow caused by increased radiative loss in the active region belt (the only existing quantitative model). We find that the model and the data are in qualitative agreement, although the amplitude of the solar-cycle variation of the meridional flow at 60 Mm is underestimated by the model.Comment: To be published in Solar Physcis Topical Issue "Helioseismology, Asteroseismology, and MHD Connections

    SORLA attenuates EphA4 signaling and amyloid, β-induced neurodegeneration

    Get PDF
    Sortilin-related receptor with LDLR class A repeats (SORLA, SORL1, or LR11) is a genetic risk factor associated with Alzheimer's disease (AD). Although SORLA is known to regulate trafficking of the amyloid {beta} (A{beta}) precursor protein to decrease levels of proteotoxic A{beta} oligomers, whether SORLA can counteract synaptic dysfunction induced by A{beta} oligomers remains unclear. Here, we show that SORLA interacts with the EphA4 receptor tyrosine kinase and attenuates ephrinA1 ligand-induced EphA4 clustering and activation to limit downstream effects of EphA4 signaling in neurons. Consistent with these findings, SORLA transgenic mice, compared with WT mice, exhibit decreased EphA4 activation and redistribution to postsynaptic densities, with milder deficits in long-term potentiation and memory induced by A{beta} oligomers. Importantly, we detected elevated levels of active EphA4 in human AD brains, where EphA4 activation is inversely correlated with SORLA/EphA4 association. These results demonstrate a novel role for SORLA as a physiological and pathological EphA4 modulator, which attenuates synaptotoxic EphA4 activation and cognitive impairment associated with A{beta}-induced neurodegeneration in AD
    corecore